

Advanced Design Workshops

- Stormwater Basics: Quality vs.
 Quantity
- 2. Downstream Analysis
- 3. Post-Construction BMP Exclusions and Infeasibilities
- 4. Wet Detention Pond Design
- 5. GDOT Post-Construction Stormwater Report

More topics to come in 2017.....

Wet Detention Pond Design

Why Are We Here?

...to discuss wet detention ponds and how they are used to meet GDOT's post-construction BMP requirements

GDOT's Approved Post-Construction BMPs

Filter Strip

Grass Channel

Enhanced Swale

Infiltration Trench

Bioslope

Sand Filter

Bioretention Basin

Dry Detention Pond

Wet Detention Pond

Stormwater Wetland

Open Graded Friction Course (OGFC)

Included in the designer's "tool box" to meet MS4 and other stormwater requirements.

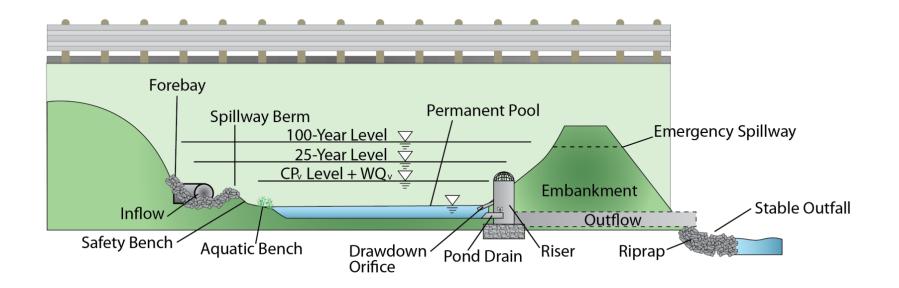
Points of Discussion

Wet Detention Pond

- Function and Components
- Design Considerations
- Advantages and Disadvantages
- Sizing and Design Methodology

What is it?

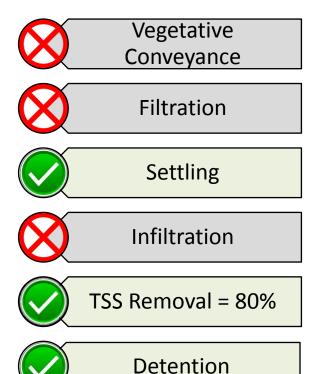
An earthen pond with a permanent pool and temporary storage for attenuating stormwater flows



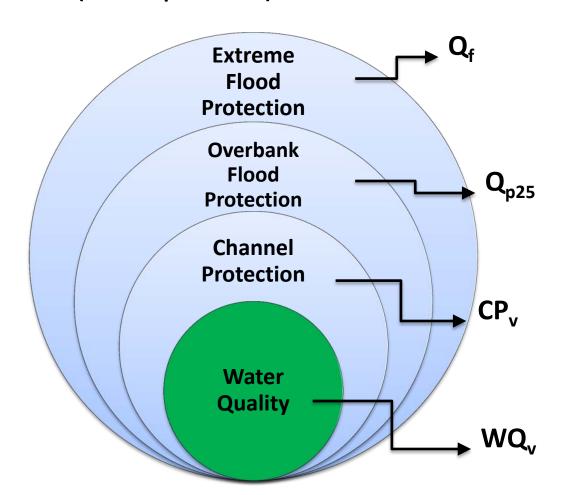
What are its critical components?

- Forebay
- Permanent Pool
- Aquatic Bench (wetland plantings)
- Safety Bench

- Detention Storage
- Outlet Control Structure
- Emergency Spillway



What is its purpose?


- Provide detention and attenuate peak flows
- Can be designed to meet all unified sizing criteria (water quality, channel protection, overbank flood protection and extreme flood protection)
- Reduce TSS and other pollutants

Four major Post-Construction Stormwater Management Requirements (MS4 permit):

Advantages

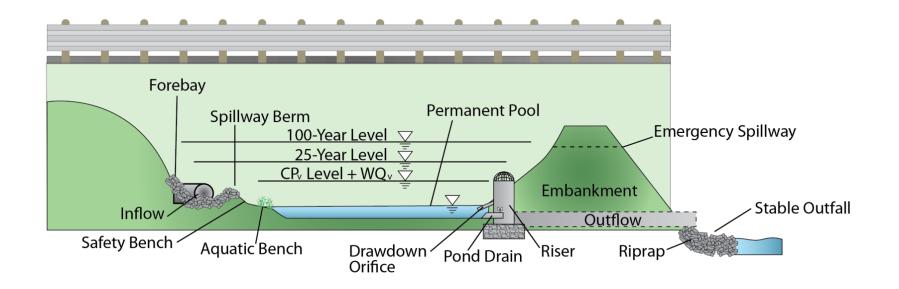
- Meets 80% TSS removal requirement
- Effective in treating other contaminants (fecal coliform, nitrogen, phosphorus, heavy metals)

Disadvantages

- Large footprint
- Difficult to maintain permanent pool
- Additional maintenance issues over dry pond
- Safety concerns associated with a permanent pool

How does it compare to other BMPs?

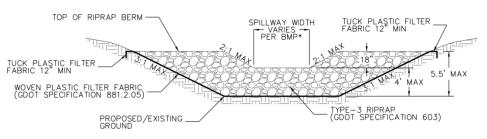
ВМР	TSS	Total Phosphorus	Total Nitrogen	Fecal Coliform	Metals
Filter Strip	60 %	20 %	20 %		40 %
Grass Channel	50 %	25 %	20 %		30 %
Enhanced Dry Swale	80 %	50 %	50 %		40 %
Enhanced Wet Swale	80 %	25 %	40 %		20 %
Infiltration Trench	80 %	60 %	60 %	90 %	90 %
Sand Filter	80 %	50 %	25 %	40 %	50 %
Dry Detention Basin	65 %	10 %	10 %		50 %
Wet Detention Pond	80 %	50 %	30 %	70 %	50 %
Stormwater Wetland – Level I	80 %	40 %	30 %	70 %	50 %
Stormwater Wetland – Level II	85 %	75 %	55 %	85 %	60 %
Bioslope	95 %	80 %	25 %	60 %	85 %
OGFC	50 %				
Bioretention	85 %	80 %	60 %	90 %	95 %



Design of Critical Components

- Forebay
- Permanent Pool
- Aquatic bench (wetland plantings)
- Safety Bench

- Detention Storage
- Outlet Control Structure
- Emergency Spillway


Forebay

<u>Purpose</u>: Dissipates inflow and reduces large particulates

Sizing: Capacity of 0.1 inch runoff/impervious acre

Permanent Pool

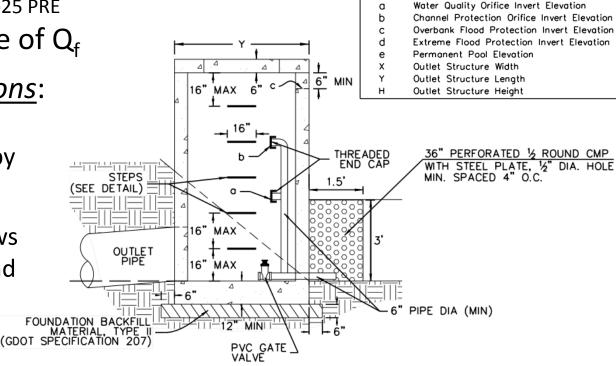
<u>Purpose</u>: Provides for settling and water quality treatment

<u>Sizing</u>: Capacity of 0.1 inch runoff/impervious acre or WQ_v for larger drainage areas

Design Considerations:

- Requires 3' to 8' depth (6' max is preferred for safety)
- Ensure permanent pool can be maintained with water balance calculation
- Bottom of pond should be minimum 2 ft above seasonably high water table if over a water supply aquifer

Outlet Control Structure


<u>Purpose</u>: Establishes permanent pool level, Outflow hydrographs

<u>Sizing</u>: Size WQ_V orifice and CP_V orifice to draw down in 24 hours

 $Q_{p25POST} \le Q_{p25PRE}$ Safe passage of Q_f

Design Considerations:

- Ensure design prevents clogging by floating debris
- Ensure design allows access to drain pond for maintenance

SYMBOL

DEFINITION

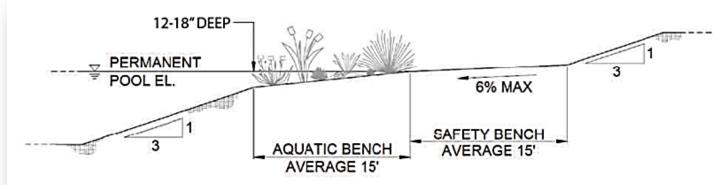
Detention Storage

<u>Purpose</u>: Detain and attenuate peak flows for larger storms

<u>Sizing</u>: Contain all Unified Sizing Criteria volumes (wQ_v, cP_v, Q_{p25}, Q_f)

Design Considerations:

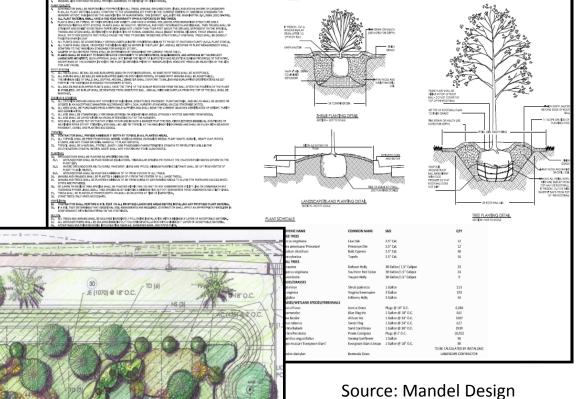
- Drainage area between 10 and 75 acres
- Detention storage is located above (and does not include) permanent pool volume



Embankment

<u>Purpose</u>: Provide aquatic and safety bench, maintenance access <u>Sizing</u>: Bench/embankments to allow plantings and maintenance <u>Design Considerations</u>:

- 2:1 maximum embankment side slope, but 3:1 is preferred
- 15' (average) aquatic bench with 12-18" depth below permanent pool
- 15' safety bench with maximum 6% slope (not required if embankment slope 4:1 or less)


Embankment

Design Considerations:

- Aquatic plantings as detailed in landscape plan
- Woody vegetation should not be planted on dam

Source: NCDOT

Emergency Spillway

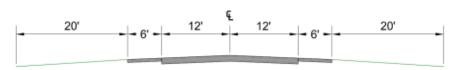
<u>Purpose</u>: Provide emergency overflow relief for protection of pond structural integrity and downstream flood prevention

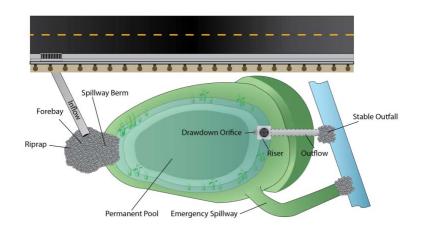
during extreme events

Sizing: Size to safely pass the 100-yr peak flow

Design Considerations:

- Protect and armor spillway weir and embankment tie-ins with concrete or riprap
- Proper sizing and protection of conveyance connection to stable outfall

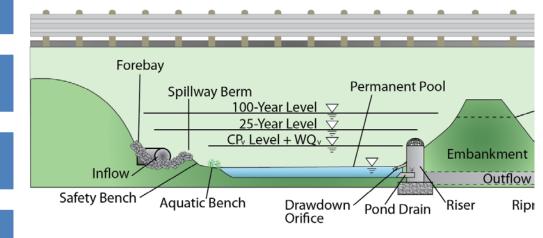




Design Example

Given:

- New alignment roadway project in Paulding County (District 6)
- Total drainage area of 10.23 acres discharging into a wet detention pond comprised of:
 - 3,000 linear feet of roadway:
 - ⁻two 12-ft lanes
 - ⁻two 6-ft paved shoulders
 - ⁻20-ft grassed areas (both sides of road) draining via sheet flow
 - 5 acres off-site drainage area (no existing impervious area)
 - Pre developed Tc = 45 minutes
 - Post developed Tc = 25 minutes

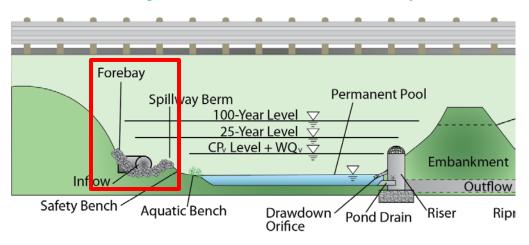


- Calculate forebay volume
- Calculate permanent pool volume and min depth
- Calculate water quality volume and design orifice
- Calculate channel protection volume and design orifice
- Design pond and outlet to maintain 25-yr pre-development peak flow
- Design spillway to safely convey 100yr post-development peak flow

1

Calculate Forebay Volume

Minimum forebay size: 0.1 inch per impervious acre (ImpAc)


ImpAc = $(3000')*(24'+12') = 108,000 \text{ ft}^2 = 2.48 \text{ acres}$

 $V_{Forebav} = (0.1 inch/acre)*(2.48 acre) = .248 acre-inch$

= 900 ft³ (actual forebay volume = 1,046 ft³)

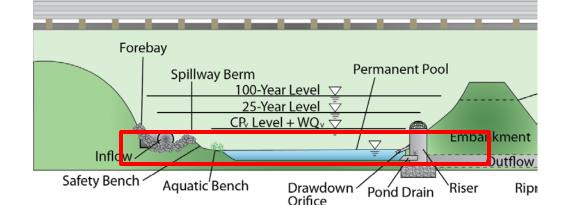
1 acre = 43,560 ft² 1 acre-inch = 3,630 ft³

Calculate forebay volume

 $V_{\text{forebay}} = 1,046 \text{ ft}^3$

- Calculate permanent pool volume and verify pond can maintain
- Calculate water quality volume and design orifice
- Calculate channel protection volume and design orifice
- Design pond and outlet to maintain 25-yr pre-development peak flow
- Design spillway to safely convey 100yr post-development peak flow

2


Calculate permanent pool volume

Minimum permanent pool (PP) size: 0.1 inch per impervious acre

ImpAc =
$$(3000')*(24'+12') = 108,000 \text{ ft}^2 = 2.48 \text{ acres}$$

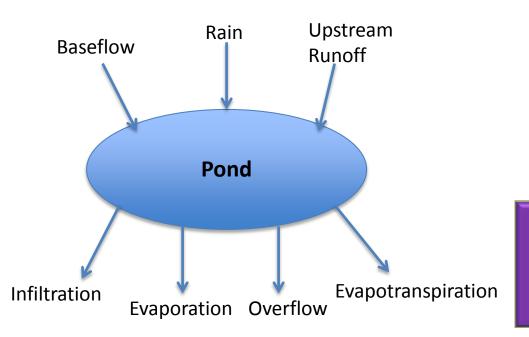
$$V_{pp} = (0.1 \text{ inch/acre})*(2.48 \text{ acre}) = .248 \text{ acre-inch}$$

= 900 ft³ (actual permanent pool = 1,422 ft³)

Conversions:

1 acre = 43,560 ft2 1 acre-inch = 3,630 ft³

2


Verify perm pool can be maintained

$$\Delta V = \Sigma inflow - \Sigma outflow$$

Eq 10.2-1

$$\Delta V = P + Ro + Bf - I - E - Et - Of$$

Eq 10.2-2

P = precipitation (ft)
Ro = runoff (ac-ft)
Bf = baseflow (ac-ft)
I = infiltration (ft)
E = evaporation (ft)
Et = evapotranspiration (ft)
Of = overflow (ac-ft)

*For this example, assume no baseflow and no evapotranspiration. Overflow is not a concern for average values of precipitation.

Calculate the volume of

precipitation that falls on the permanent pool

Calculate the volume of runoff from the contributing drainage area

SUM INFLOWS

Calculate the volume of evaporation that occurs over the permanent pool Calculate infiltration

SUM OUTFLOWS

Calculate the difference between the inflows and outflows

> **VERIFY PERM POOL CAN BE MAINTAINED**

Calculate the volume of precipitation that falls on the permanent pool

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Precip (in)	4.84	5.16	5.08	3.94	4.13	4.06	5.12	4.33	4.09	3.43	4.29	4.49

United States Georgia Monthly Daily History Geo & Map Weather Forecast Climate Dallas - Georgia °C | °F Average high in °F: Average low in °F: 33 55 Av. precipitation in inch: 4.13 Davs with precipitation: Hours of sunshine: Average snowfall in inch: 0 1 0 Oct Nov Average high in °F: Average low in °F: 39 32 Av. precipitation in inch: 4.33 4.09 4.29

Days with precipitation:

http://www.usclimatedata.com/climate/dallas/georgia/united-states/usga0157

Calculate the volume of precipitation that falls on the permanent pool

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Precip (in)	4.84	5.16	5.08	3.94	4.13	4.06	5.12	4.33	4.09	3.43	4.29	4.49
P (pool) (ac-ft)	0.008	0.009	0.008	0.007	0.007	0.007	0.009	0.007	0.007	0.006	0.007	0.007

Precipitation volume directly into pond (P) equals precipitation depth (inches) times permanent pool surface area (**0.02 acre**) divided by 12 to convert to acre-feet

Calculate the volume of runoff from the contributing drainage area

$$Ro = \frac{QA}{12}$$
 Eq 10.2-5

$$Q = (0.9R_v)P$$
 Eq 10.2-4

$$Ro = \frac{(0.9R_v) * P * A}{12}$$

Q = runoff depth (in)

Ro = runoff volume (ac-ft)

A = site area minus permanent pool area (acres)

P = precipitation (in)

 $R_v = volumetric runoff coefficient$

Values needed to calculate Ro:

Rv = ?

P = determined in previous step

A = ?

Calculate the volume of runoff from the contributing drainage area

I = percent imperviousness
of drainage basin (percent)

$$R_v = 0.05 + 0.009(I)$$
 Eq 10.2-3

$$I = \frac{2.48 \ ac}{10.23 \ ac} = 24.2\%$$

$$R_{\nu} = 0.05 + 0.009(24.2) = 0.27$$

Calculate the volume of runoff from the contributing drainage area

Permanent Pool Area =
$$857 \text{ ft}^2 = 0.02 \text{ acre}$$

Basin Area = 10.23 acres
 $A = 10.23 - 0.02 = 10.21 \text{ acres}$

$$Ro = \frac{(0.9 * 0.27) * P * (10.21 ac)}{12 (\frac{in}{ft})}$$

Conversions:

1 acre = 43,560 ft2

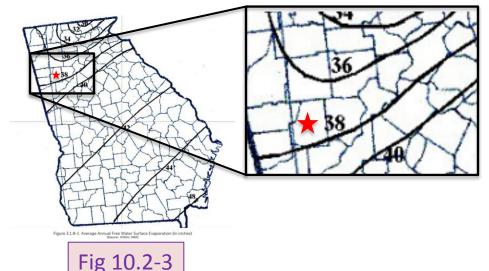
Calculate the volume of runoff from the contributing drainage area

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Precip (in)	4.84	5.16	5.08	3.94	4.13	4.06	5.12	4.33	4.09	3.43	4.29	4.49
P (pool) (ac-ft)	0.008	0.009	0.008	0.007	0.007	0.007	0.009	0.007	0.007	0.006	0.007	0.007
Ro (ac-ft)	1.00	1.07	1.05	0.81	0.85	0.84	1.06	0.90	0.85	0.71	0.89	0.93

Total the inflow to the Wet Pond

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
P (pool) (ac-ft)	0.008	0.009	0.008	0.007	0.007	0.007	0.009	0.007	0.007	0.006	0.007	0.007
Ro (ac-ft)	1.00	1.07	1.05	0.81	0.85	0.84	1.06	0.90	0.85	0.71	0.89	0.93
Inflow (ac-ft)	1.008	1.079	1.058	0.817	0.857	0.847	1.069	0.907	0.857	0.716	0.897	0.937

Sum the monthly precipitation and runoff inflows to get total monthly inflow to the pond



- Calculate the volume of evaporation that occurs over the permanent pool
 - Obtain monthly evaporation distribution

	Table 10.2-2 Evaporation Monthly Distribution (10-11)												
Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec											Dec		
3.2%	4.4%	7.4%	10.3%	12.3%	12.9%	13.4%	11.8%	9.3%	7.0%	4.7%	3.2%		

Determine the annual free water surface evaporation value

= 37.5 inches

Calculate the volume of evaporation that occurs over the permanent pool

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Evap. Dist.	3.2%	4.4%	7.4%	10.3%	12.3%	12.9%	13.4%	11.8%	9.3%	7.0%	4.7%	3.2%
E (inch)	1.2	1.7	2.8	3.9	4.6	4.8	5.0	4.4	3.5	2.6	1.8	1.2
E (ac-ft)	0.002	0.003	0.005	0.006	0.008	0.008	0.008	0.007	0.006	0.004	0.003	0.002

Evaporation equals monthly percent of 37.5 inches multiplied by the surface area of the permanent pool (*calculated earlier as .02 acre*) and converted to acre-feet

4

Calculate the volume of infiltration that occurs in the wet pond

Estimate the hydraulic conductivity of your soils using Table 10.2-1

For this example, assume sandy clay loam soil

Table 10.2-1 Saturated Hydraulic Conductivity (10-11)								
Material	Hydraulic Conductivity							
Waterial	in/ <u>hr</u>	ft/day						
ASTM Crushed Stone No. 3	50,000	100,000						
ASTM Crushed Stone No. 4	40,000	80,000						
ASTM Crushed Stone No. 5	25,000	50,000						
ASTM Crushed Stone No. 6	15,000	30,000						
Sand	8.27	16.54						
Loamy sand	2.41	4.82						
Sandy loam	1.02	2.04						
Loam	0.52	1.04						
Silt Inam	0.27	0.54						
Sandy clay loam	0.17	0.34						
Clay loam	0.09	0.18						
Silty clay loam	0.06	0.12						
Sandy clay	0.05	0.1						
Silty clay	0.04	0.08						
Clay	0.02	0.04						

Calculate the volume of infiltration that occurs in the wet pond

$$I = Ak_h G_h \qquad \text{Eq 10.2-6}$$

I = infiltration (ac-ft/day)

A = cross sectional area through which water infiltrates (ac).

 k_h = saturated hydraulic conductivity or infiltration rate (ft/day)

 G_h = hydraulic gradient = pressure head/distance

In this example, we have a total surface area of 0.02 acres (A total) in our permanent pool.

Typical values of G_h are 1.0 for pond bottom and 0.5 for pond sides steeper than 4:1

$$A_{total} = A_{bottom} + A_{sides} = 0.016 + 0.004$$

$$I = [(0.004 \ ac)(1) + (0.016 \ ac)(0.5)] \left(0.34 \frac{ft}{day}\right)$$
$$= 0.004 \ ac - ft/day$$

4

Calculate the volume of infiltration that occurs in the wet pond

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Days/ Mo	31	28	31	30	31	30	31	31	30	31	30	31
Evap. Dist.	3.2%	4.4%	7.4%	10.3%	12.3%	12.9%	13.4%	11.8%	9.3%	7.0%	4.7%	3.2%
E (inch)	1.2	1.7	2.8	3.9	4.6	4.8	5.0	4.4	3.5	2.6	1.8	1.2
E (ac-ft)	0.002	0.003	0.005	0.006	0.008	0.008	0.008	0.007	0.006	0.004	0.003	0.002
l (ac-ft)	0.105	0.095	0.105	0.102	0.105	0.102	0.105	0.105	0.102	0.105	0.102	0.105

Infiltration equals daily infiltration rate of .004 ac-ft per day multiplied by the number of days in each month

Total the outflow from the Wet Pond

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
E (ac-ft)	0.002	0.003	0.005	0.006	0.008	0.008	0.008	0.007	0.006	0.004	0.003	0.002
। (ac-ft)	0.105	0.095	0.105	0.102	0.105	0.102	0.105	0.105	0.102	0.105	0.102	0.105
Outflow (ac-ft)	0.107	0.098	0.110	0.108	0.113	0.110	0.114	0.113	0.108	0.110	0.105	0.107

Sum the monthly evaporation and infiltration outflows to get total monthly outflow from the pond

5

Calculate the difference between the inflows and outflows

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Inflow (ac-ft)	1.008	1.079	1.058	0.817	0.857	0.847	1.069	0.907	0.857	0.716	0.897	0.937
Outflow (ac-ft)	0.107	0.098	0.110	0.108	0.113	0.110	0.114	0.113	0.108	0.110	0.105	0.107
Balance (ac-ft)	0.901	0.981	0.948	0.709	0.744	0.737	0.955	0.794	0.749	0.606	0.792	0.83
Balance (ft³)	39,248	42,732	41,295	30,884	32,409	32,104	41,600	34,587	32,626	26,397	34,500	36,155

Subtract the outflows from the inflows to get the monthly balance of the wet pond and convert to cubic feet for comparison with perm pool volume

The water balance is greater than the permanent pool volume (1,422 ft³) every month: **the pond can maintain the permanent pool**

- Calculate forebay volume
- 2 Calculate permanent pool volume and verify pond can maintain
- Calculate water quality volume and design orifice
- Calculate channel protection volume and design orifice
- Design pond and outlet to maintain 25-yr pre-development peak flow
- Design spillway to safely convey 100yr post-development peak flow

- $V_{\text{forebay}} = 1,046 \text{ ft}^3$
- $V_{permpool} = 1,422 \text{ ft}^3$, Depth_{min} = 3.0 ft

3

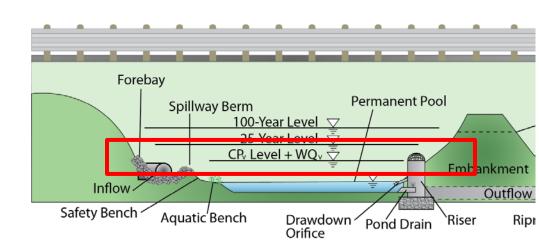
Calculate water quality volume (WQ_V)

WQv based on basin area and new impervious area percentage

Eq 10.2-7 $WQ_V (ft^3) = 1.2(in) * R_V * A(acres) * 43,560(acres/ft^2)/12(in/ft)$

= (1.2) * (0.47) * (5.23) * (43,560) / 12

 $= 10,707 \text{ ft}^3$


 R_v = volumetric runoff coefficient = 0.05+0.009*I = 0.05+0.009*(47) = 0.47

I = impervious area (%)

Remember the permanent pool volume is included in WQv, so:

$$WQ_V$$
 (ft³) = 10,707 ft³ – (1,046 ft³ + 1,422 ft³)

 $= 8,239 \text{ ft}^3$

3

Design water quality (WQ_V) orifice

Orifice sized to release WQv over 24 hours

Orifice Equation:

$$Q_{WQv}$$
 (cfs) = C_D * A (ft²) * $\sqrt{(2g)\Delta H_{max}(ft)}$

Eq 10.4.3-3

$$(.095 \text{ cfs}) = (0.6) * (A) * \sqrt{2* (32.2 \text{ft/s}^2) * (1 \text{ft})}$$

$$A = .020 \text{ ft}^2$$

$$D = \sqrt{4 * (.020 \text{ ft}^2)/\pi}$$

 Q_{WQv} (orifice flow rate) = 8,239 ft³/24 hr = 0.095 cfs

 C_D (orifice coefficient) = 0.6

A = orifice area (ft)

 Δ H_{max} (max depth at WQv stage) = 1.0 ft

D = 0.16 ft = 1.9 in (use 2.0 inches for constructability)

WQ_v orifice: 2" diameter at top of permanent pool

- Calculate forebay volume
- Calculate permanent pool volume and verify pond can maintain
- Calculate water quality volume and design orifice
- Calculate channel protection volume and design orifice
- Design pond and outlet to maintain 25-yr pre-development peak flow
- Design spillway to safely convey 100yr post-development peak flow

- $V_{\text{forebay}} = 1,046 \text{ ft}^3$
- $V_{permpool} = 1,422 \text{ ft}^3$, Depth_{min} = 3.0 ft
- $WQ_v = 8,239 \text{ ft}^3$, $D_{orif} = 2"$, $Elev_{orif} = perm pool elevation$

1

Determine runoff depth(Q-inches) for 1-year 24-hour storm event

2

Determine the unit peak discharge rate (q_u) for the 1-year 24-hour storm event

3

Compute the channel protection volume

1

Determine direct runoff depth for 1-year 24-hour storm event

Calculate direct runoff:

P = 1-year 24-hour rainfall depth (inches)

S = ultimate abstraction (inches)

$$Q_{1,24} = \frac{(P - 0.2S)^2}{(P + 0.8S)}$$

Eq 10.2-10

$$S = 4.29$$
 inches $P = ?$

To calculate S, we use the following formula:

Eq 10.2-11
$$S = \frac{1000}{CN} - 10$$

We need to know the basin CN to perform this calculation

1

Determine direct runoff depth for 1-year 24-hour storm event

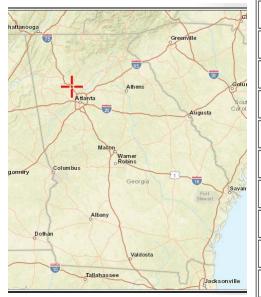
Calculate composite CN number for the project basin:

Impervious Area (calculated earlier) = 2.48 ac (CN=98) Pervious Area (10.23 total acres – 2.48 acres) = 7.75 ac (CN=61)

$$CN = \frac{(2.48*98) + (7.75*61)}{10.23} = 70$$

Now we can calculate ultimate abstraction:

$$S = \frac{1000}{CN} - 10 = 1000/70 - 10 = 4.29$$
 inches


1

Determine direct runoff depth for 1-year 24-hour storm event

Obtain 1-year 24-hour rainfall depth for project location from NOAA website:

http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html?bkmrk=ga

S = 4.29 inches P = 3.41 inches

	PDS-based precipitation frequency estimates with 90% confidence intervals (in inches) ¹											
Duration		Average recurrence interval (years)										
Duration	1	2	5	10	25	50	100	200	500			
5-min	0.410 (0.351-0.483)	0.470 (0.402-0.555)	0.576 (0.490-0.680)	0.669 (0.565-0.793)	0.806 (0.660-0.987)	0.919 (0.731-1.13)	1.04 (0.794-1.30)	1.17 (0.850-1.49)	1.34 (0.937-1.75)			
10-min	0.601 (0.513-0.708)	0.689 (0.588-0.812)	0.843 (0.717-0.996)	0.979 (0.828-1.16)	1.18 (0.966-1.45)	1.35 (1.07-1.66)	1.52 (1.16-1.91)	1.71 (1.24-2.19)	1.97 (1.37-2.57)			
15-min	0.732 (0.626-0.863)	0.840 (0.717-0.991)	1.03 (0.874-1.21)	1.19 (1.01-1.42)	1.44 (1.18-1.76)	1.64 (1.31-2.03)	1.85 (1.42-2.33)	2.08 (1.52-2.66)	2.40 (1.67-3.13)			
30-min	1.04 (0.889-1.23)	1.19 (1.02-1.41)	1.46 (1.24-1.72)	1.69 (1.43-2.01)	2.05 (1.67-2.51)	2.33 (1.86-2.88)	2.64 (2.02-3.32)	2.97 (2.17-3.80)	3.43 (2.39-4.48)			
60-min	1.35 (1.15-1.59)	1.54 (1.32-1.82)	1.89 (1.61-2.23)	2.19 (1.85-2.60)	2.65 (2.17-3.24)	3.02 (2.40-3.73)	3.42 (2.61-4.29)	3.84 (2.80-4.92)	4.44 (3.10-5.80)			
2-hr	1.66 (1.42-1.94)	1.90 (1.63-2.22)	2.32 (1.98-2.72)	2.69 (2.29-3.17)	3.25 (2.68-3.95)	3.71 (2.98-4.54)	4.19 (3.24-5.23)	4.72 (3.48-5.99)	5.45 (3.86-7.05)			
3-hr	1.86 (1.61-2.17)	2.13 (1.83-2.48)	2.60 (2.23-3.03)	3.01 (2.57-3.53)	3.62 (3.00-4.38)	4.13 (3.33-5.03)	4.66 (3.62-5.78)	5.23 (3.89-6.60)	6.03 (4.30-7.76)			
6-hr	2.30 (1.99-2.66)	2.61 (2.26-3.03)	3.16 (2.72-3.66)	3.63 (3.12-4.23)	4.33 (3.62-5.19)	4.91 (3.99-5.92)	5.51 (4.33-6.76)	6.15 (4.63-7.69)	7.04 (5.10-8.97)			
12-hr	2.85 (2.48-3.27)	3.22 (2.80-3.70)	3.85 (3.34-4.44)	4.40 (3.80-5.08)	5.19 (4.35-6.15)	5.82 (4.77-6.95)	6.48 (5.14-7.87)	7.17 (5.47-8.86)	8.12 (5.96-10.2)			
24-hr	3.41 (2.99-3.89)	3.88 (3.40-4.43)	4.66 (4.06-5.33)	5.31 (4.61-6.09)	6.23 (5.25-7.29)	6.94 (5.73-8.20)	7.67 (6.14-9.21)	8.41 (6.49-10.3)	9.41 (7.01-11.7)			
2-day	3.93 (3.46-4.45)	4.52 (3.97-5.12)	5.47 (4.80-6.21)	6.26 (5.47-7.13)	7.35 (6.23-8.52)	8.18 (6.81-9.58)	9.02 (7.29-10.7)	9.86 (7.70-11.9)	11.0 (8.30-13.5)			

1

Determine direct runoff depth for 1-year 24-hour storm event

Now we have values for S and P:

Calculate direct runoff:

P = 1-year 24-hour rainfall depth (inches)

S = ultimate abstraction (inches)

$$\mathbf{Q}_{1,24} = \frac{(P-0.2S)^2}{(P+0.8S)}$$

Eq 10.2-10

S = 4.29 inches P = 3.41 inches

$$=\frac{(3.41-0.2*4.29)^2}{(3.41+0.8*4.29)}$$

= 0.95 inches

2

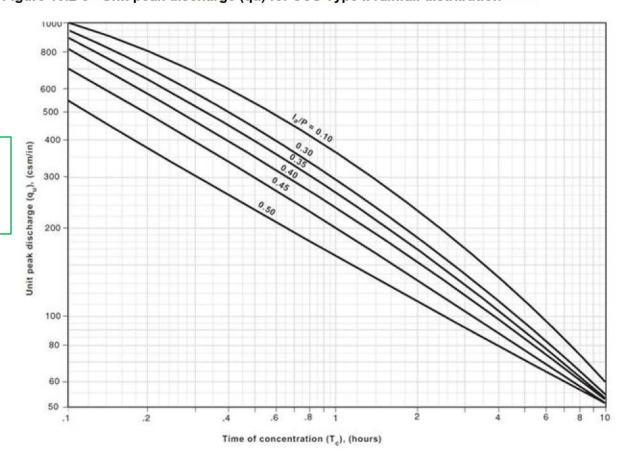
Determine the unit peak discharge rate (q_u) for the 1-year 24-hour storm event

Determine q_u:

Figure 10.2-8 - Unit peak discharge (qu) for SCS Type II rainfall distribution (10-33)

Fig 10.2-8

Ia = ?


P = 3.41 inches

Tc = 25 minutes (given)

Ia = 0.2 * S

= 0.2 * 4.29 inches

= 0.858 inches



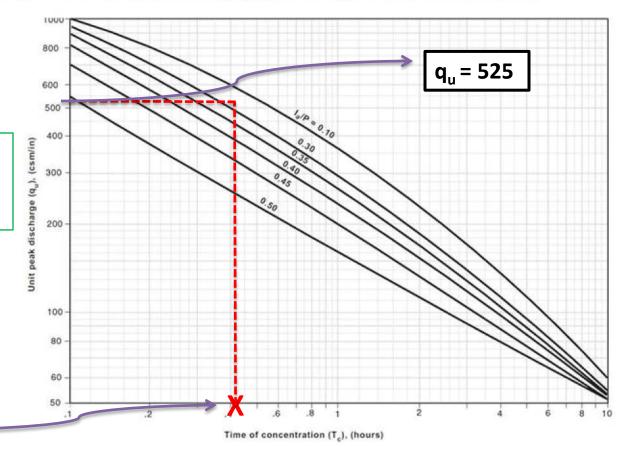
2

Determine the unit peak discharge rate (q_u) for the 1-year 24-hour storm event

Determine q..:

Figure 10.2-8 - Unit peak discharge (qu) for SCS Type II rainfall distribution (10-33)

Ia = 0.858


P = 3.41 inches

Tc = 25 minutes (given)

$$Ia/P = 0.858/3.41$$

= 0.25

Tc = 25 minutes

= 0.42 hour

3

Compute the channel protection volume

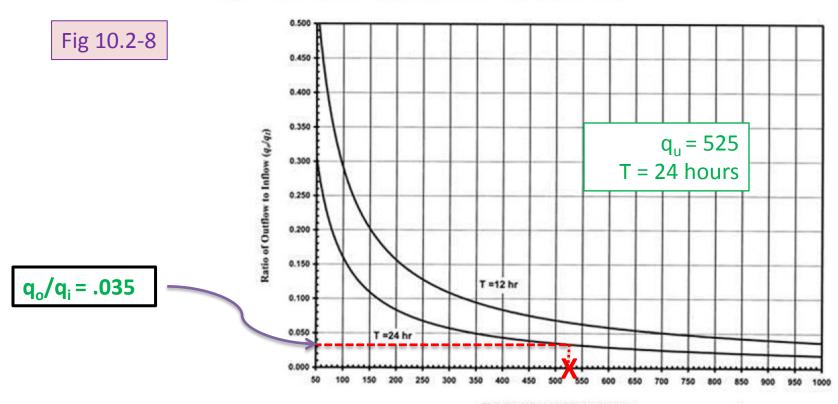
Calculate Vs (storage volume required):

$$V_S = \left(\frac{V_S}{V_R}\right) * Q"1,24 * A * 3630$$

We need to know V_S/V_R to perform this calculation....

$$\frac{V_S}{V_R} = 0.682 - 1.43 \left(\frac{q_o}{q_i}\right) + 1.64 \left(\frac{q_o}{q_i}\right)^2 - 0.804 \left(\frac{q_o}{q_i}\right)^3$$

We need to know q_o/q_i to perform this calculation.....



3

Compute the channel protection volume

Determine q_o/q_i :

Figure 10.2-6 - SCS ratio of outflow to inflow curves (10-23)

3

Compute the channel protection volume

Now we can calculate V_s/V_R :

Eq 10.2-12
$$\frac{V_S}{V_R} = 0.682 - 1.43 \left(\frac{q_o}{q_i}\right) + 1.64 \left(\frac{q_o}{q_i}\right)^2 - 0.804 \left(\frac{q_o}{q_i}\right)^3$$

$$q_o/q_i = .035$$
 = 0.682 - 1.43 (.035) + 1.64 (.035)² - 0.804 (.035)³ = 0.63

Now we can calculate V_s :

Eq 10.2-13
$$V_S = \left(\frac{V_S}{V_R}\right) * Q"1,24 * A * 3630$$

= (0.63) * (0.95 inch) * (10.23 acre) * (3,630 ft³/inch-acre)
= 22,225 ft³

4

Design channel protection (CP_v) orifice

Orifice sized to release CPv over 24 hours

Orifice Equation:

$$Q_{CPv}$$
 (cfs) = C_D * A (ft²) * $\sqrt{(2g)\Delta H_{max}}$ (ft) Eq 10.4.3-3
(.257 cfs) = (0.6) * (A) * $\sqrt{2* (32.2ft/s^2) * (1.28ft)}$

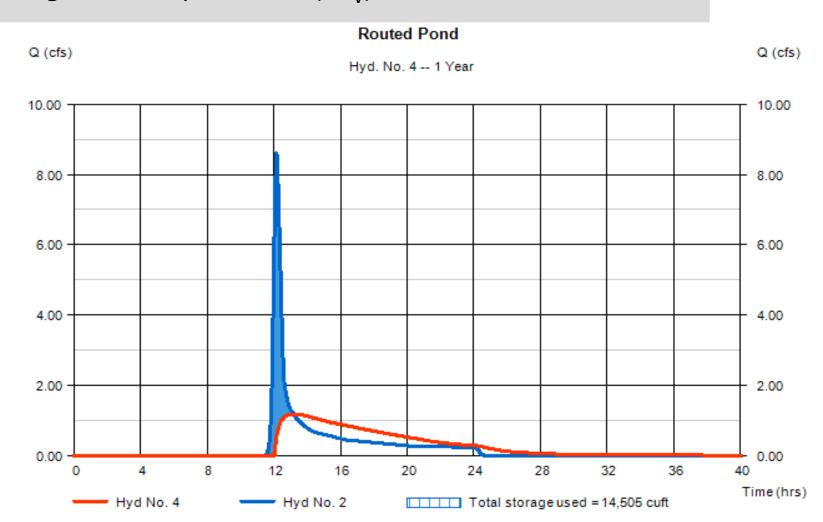
$$A = 0.047 \text{ ft}^2$$

$$D = \sqrt{4 * (0.047 ft^2)/\pi}$$

$$Q_{WQv}$$
 (orifice flow rate) = 22,225 ft³/24 hr = .257 cfs
 C_D (orifice coefficient) = 0.6

$$\Delta H_{max}$$
 (max depth at CPv stage) = 1.28 ft

D = 0.25 ft = 2.9 in (use 3 inches for constructability)


CP_v orifice: 3" diameter at top of water quality volume

4

Design channel protection (CP_v) orifice

- Calculate forebay volume
- 2 Calculate permanent pool volume and verify pond can maintain
- Calculate water quality volume and design orifice
- Calculate channel protection volume and design orifice
- Design pond and outlet to maintain 25-yr pre-development peak flow
- Design spillway to safely convey 100yr post-development peak flow

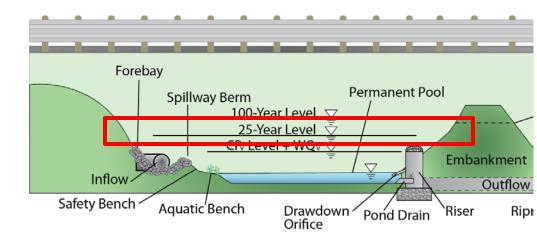
$$V_{\text{fbay}} = 900 \text{ ft}^3$$

$$V_{pool} = 900 \text{ ft}^3$$
, Depth_{min} = 1.5 ft

$$WQ_v = 9,059 \text{ ft}^3$$
, $D_{orif} = 2$ ", $Elev_{orif} = perm pool elevation$

$$CP_v = 22,225 \text{ ft}^3$$
, $D_{orif} = 3$ ", $Elev_{orif} = water quality elevation$

$$Q_{fpre} =$$



5

Maintain pre-development peak flows (Q_{P25})

Multi-step process to calculate Q_{P25} using NRCS TR-55 Methodology

- Compute pre-development peak flow
- Compute post-development peak flow
- Calculate estimated storage volume
- _ Design outlet control structure for Q_{25post} ≤ Q_{25pre}

- Determine runoff depth(Q-inches) for 25-year 24-hour storm event
- Determine the unit peak discharge rate (q_u) for the 25-year 24-hour storm event
- Compute the overbank flooding protection volume
- Estimate the peak flow rates

- Determine runoff depth(Q-inches) for 25-year 24-hour storm event
- Determine the unit peak discharge rate (q_u) for the 25-year 24-hour storm event
- Compute the overbank flooding protection volume
- Estimate the peak flow rates

Calculate direct runoff: Q"
$$_{25,24} = \frac{(P-0.2S)^2}{(P+0.8S)}$$
 Eq 10.2-10

$$S = \frac{1000}{CN} - 10$$

$$CN_{\text{exist}} = 61 \qquad S_{\text{pre}} = 6.4 \qquad P_{25,24} = ?$$

$$CN_{\text{prop}} = 70 \qquad S_{\text{post}} = 4.3$$

Obtain 25-year 24-hour rainfall depth for project location from NOAA website:

http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html?bkmrk=ga

S. Control I and Advertise to the State of t
hattanooga
Greenville
Attens Gottin
Augusta Cafol
Macon
Warner Robins
gomery Georgia
Fort Slewart
Albany
Dothan
Valdosta
Tallahassee Jacksonville

	PDS-based precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration					Average recurren	ce interval (years)					
Duration	1	2	5	10	25	50	100	200	500		
5-min	0.410 (0.351-0.483)	0.470 (0.402-0.555)	0.576 (0.490-0.680)	0.669 (0.565-0.793)	0.806 (0.660-0.987)	0.919 (0.731-1.13)	1.04 (0.794-1.30)	1.17 (0.850-1.49)	1.34 (0.937-1.75)		
10-min	0.601 (0.513-0.708)	0.689 (0.588-0.812)	0.843 (0.717-0.996)	0.979 (0.828-1.16)	1.18 (0.966-1.45)	1.35 (1.07-1.66)	1.52 (1.16-1.91)	1.71 (1.24-2.19)	1.97 (1.37-2.57)		
15-min	0.732 (0.626-0.863)	0.840 (0.717-0.991)	1.03 (0.874-1.21)	1.19 (1.01-1.42)	1.44 (1.18-1.76)	1.64 (1.31-2.03)	1.85 (1.42-2.33)	2.08 (1.52-2.66)	2.40 (1.67-3.13)		
30-min	1.04 (0.889-1.23)	1.19 (1.02-1.41)	1.46 (1.24-1.72)	1.69 (1.43-2.01)	2.05 (1.67-2.51)	2.33 (1.86-2.88)	2.64 (2.02-3.32)	2.97 (2.17-3.80)	3.43 (2.39-4.48)		
60-min	1.35 (1.15-1.59)	1.54 (1.32-1.82)	1.89 (1.61-2.23)	2.19 (1.85-2.60)	2.65 (2.17-3.24)	3.02 (2.40-3.73)	3.42 (2.61-4.29)	3.84 (2.80-4.92)	4.44 (3.10-5.80)		
2-hr	1.66 (1.42-1.94)	1.90 (1.63-2.22)	2.32 (1.98-2.72)	2.69 (2.29-3.17)	3.25 (2.68-3.95)	3.71 (2.98-4.54)	4.19 (3.24-5.23)	4.72 (3.48-5.99)	5.45 (3.86-7.05)		
3-hr	1.86 (1.61-2.17)	2.13 (1.83-2.48)	2.60 (2.23-3.03)	3.01 (2.57-3.53)	3.62 (3.00-4.38)	4.13 (3.33-5.03)	4.66 (3.62-5.78)	5.23 (3.89-6.60)	6.03 (4.30-7.76)		
6-hr	2.30 (1.99-2.66)	2.61 (2.26-3.03)	3.16 (2.72-3.66)	3.63 (3.12-4.23)	4.33 (3.62-5.19)	4.91 (3.99-5.92)	5.51 (4.33-6.76)	6.15 (4.63-7.69)	7.04 (5.10-8.97)		
12-hr	2.85 (2.48-3.27)	3.22 (2.80-3.70)	3.85 (3.34-4.44)	4.40 (3.80-5.08)	5.19 (4.35-6.15)	5.82 (4.77-6.95)	6.48 (5.14-7.87)	7.17 (5.47-8.86)	8.12 (5.96-10.2)		
24-hr	3.41 (2.99-3.89)	3.88 (3.40-4.43)	4.66 (4.06-5.33)	5.31 (4.61-6.09)	6.23 (5.25-7.29)	6.94 (5.73-8.20)	7.67 (6.14-9.21)	8.41 (6.49-10.3)	9.41 (7.01-11.7)		
2-day	3.93 (3.46-4.45)	4.52 (3.97-5.12)	5.47 (4.80-6.21)	6.26 (5.47-7.13)	7.35 (6.23-8.52)	8.18 (6.81-9.58)	9.02 (7.29-10.7)	9.86 (7.70-11.9)	11.0 (8.30-13.5)		

- Determine runoff depth(Q-inches) for 25-year 24-hour storm event
- Determine the unit peak discharge rate (q_u) for the 25-year 24-hour storm event
- Compute the overbank flooding protection volume
- Estimate the peak flow rates

Calculate direct runoff: Q"
$$_{25,24} = \frac{(P-0.2S)^2}{(P+0.8S)}$$
 Eq 10.2-10
$$S = \frac{1000}{CN} - 10$$

$$CN_{exist} = 61 \qquad S_{pre} = 6.4 \qquad P_{25,24} = 6.23 \text{ inches}$$

$$CN_{prop} = 70 \qquad S_{post} = 4.3$$

$$Q_{25,24 \text{ pre}} = 2.15 \text{ inches}$$

$$Q_{25,24 \text{ pre}} = 2.83 \text{ inches}$$

$$Q_{25,24 \text{ post}} = 2.98 \text{ inches}$$

1

Determine runoff depth(Q-inches) for 25-year 24-hour storm event

2

Determine the unit peak discharge rate (q_u) for the 25-year 24-hour storm event

3

Compute the overbank flooding protection volume

4

Estimate the peak flow rates

Calculate direct runoff: Q"
$$_{25,24} = \frac{(P-0.2S)^2}{(P+0.8S)}$$
 Eq 10.2-10
$$S = \frac{1000}{\text{CN}} - 10$$

$$CN_{\text{exist}} = 61 \quad S_{\text{pre}} = 6.4 \quad P_{25,24} = 6.23 \text{ inches}$$

$$CN_{\text{prop}} = 70 \quad S_{\text{post}} = 4.3$$

$$Q_{25,24 \text{ pre}} = 2.15 \text{ inches} \quad Q_{25,24 \text{ post}} = 2.98 \text{ inches}$$

Q _{25 24 NFT} = 0.83 inches

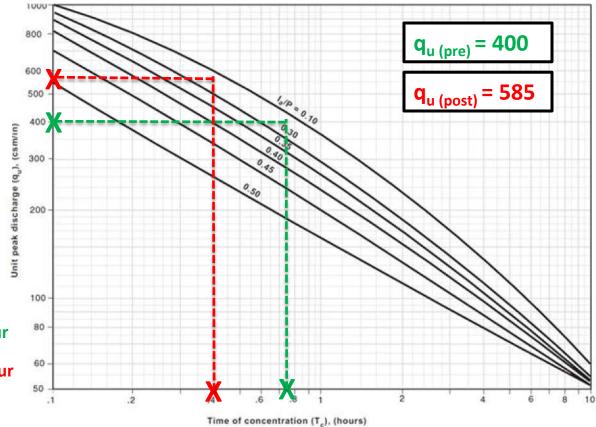
Determine q_u using Figure 10.2-8

Determine q_{...}:

Figure 10.2-8 - Unit peak discharge (qu) for SCS Type II rainfall distribution (10-33)

Fig 10.2-8

Ia
$$_{pre} = 0.2 * S_{pre} = 1.28$$


$$Ia_{post} = 0.2 * S_{post} = 0.86$$

P = 6.23 inches

$$Ia/P_{(post)} = 0.868/6.23 = 0.14$$

Tc $_{(pre)}$ = 45 minutes = 0.75 hour

 $Tc_{(post)} = 25 \text{ minutes} = 0.40 \text{ hour}$

1

Determine runoff depth(Q-inches) for 25-year 24-hour storm event

2

Determine the unit peak discharge rate (q_u) for the 25-year 24-hour storm event

3

Compute the overbank flooding protection volume

4

Estimate the peak flow rates

Calculate direct runoff:
$$Q''_{25,24} = \frac{(P-0.2S)^2}{(P+0.8S)}$$
 Eq 10.2-10

$$\mathbf{S} = \frac{1000}{\text{CN}} - 10 \qquad \begin{array}{c} \text{CN}_{\text{exist}} = 61 \\ \text{CN}_{\text{prop}} = 70 \end{array} \qquad \begin{array}{c} \text{S}_{\text{pre}} = 6.4 \\ \text{S}_{\text{post}} = 4.3 \end{array} \qquad \begin{array}{c} \text{P}_{25,24} = 6.23 \text{ inches} \\ \text{P}_{25,24} = 6.23 \text{ inches} \end{array}$$

$$Q_{25,24 \text{ pre}}$$
 = 2.15 inches $Q_{25,24 \text{ post}}$ = 2.98 inches $Q_{25,24 \text{ post}}$ = 0.83 inches

Determine q_u using Figure 10.2-8

$$q_{u 25,24 pre} = 400$$
 $q_{u 25,24 post} = 585$

1

Determine runoff depth(Q-inches) for 25-year 24-hour storm event

2

Determine the unit peak discharge rate (q_u) for the 25-year 24-hour storm event

3

Compute the overbank flooding protection volume

4

Estimate the peak flow rates

Calculate direct runoff:
$$Q''_{25,24} = \frac{(P-0.2S)^2}{(P+0.8S)}$$
 Eq 10.2-10

$$S = \frac{1000}{\text{CN}} - 10$$

$$\frac{\text{CN}_{\text{exist}} = 61}{\text{CN}_{\text{prop}} = 70}$$

$$S_{\text{post}} = 6.4$$

$$S_{\text{post}} = 6.23 \text{ inches}$$

$$S_{\text{post}} = 4.3$$

$$Q_{25,24 \text{ pre}}$$
 = 2.15 inches $Q_{25,24 \text{ post}}$ = 2.98 inches $Q_{25,24 \text{ post}}$ = 0.83 inches

Determine quusing Figure 10.2-8

$$q_{u 25.24 pre} = 400$$

$$q_{u 25,24 post} = 585$$

Eq 10.2-13

Calculate Vs (storage volume required): $V_S = \left(\frac{V_s}{V_R}\right) * Q"25,24*A*$ 3,630

1

Determine runoff depth(Q-inches) for 25-year 24-hour storm event

2

Determine the unit peak discharge rate (q_u) for the 25-year 24-hour storm event

3

Compute the overbank flooding protection volume

4

Estimate the peak flow rates

Calculate direct runoff:
$$Q''_{25,24} = \frac{(P-0.2S)^2}{(P+0.8S)}$$
 Eq 10.2-10

$$\mathbf{S} = \frac{1000}{\text{CN}} - 10 \qquad \begin{array}{c} \text{CN}_{\text{exist}} = 61 \\ \text{CN}_{\text{prop}} = 70 \end{array} \qquad \begin{array}{c} \text{S}_{\text{pre}} = 6.4 \\ \text{S}_{\text{post}} = 4.3 \end{array} \qquad \begin{array}{c} \text{P}_{25,24} = 6.23 \text{ inches} \end{array}$$

$$Q_{25,24 \text{ pre}}$$
 = 2.15 inches $Q_{25,24 \text{ post}}$ = 2.98 inches $Q_{25,24 \text{ NET}}$ = 0.83 inches

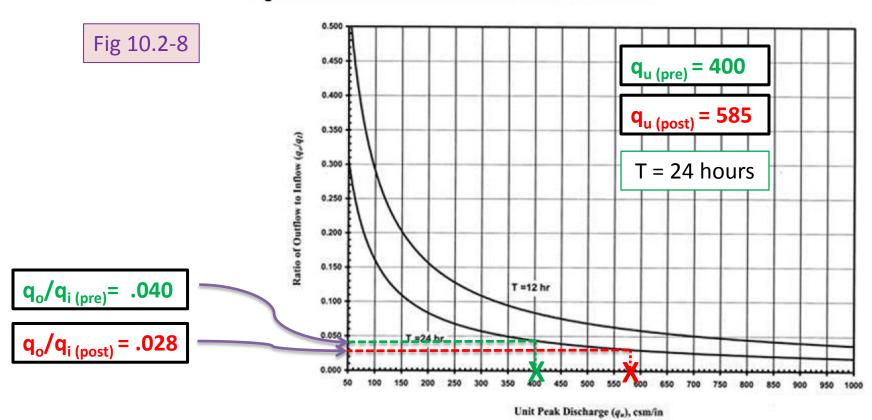
Determine q_u using Figure 10.2-8

$$q_{u 25,24 pre} = 400$$

$$q_{u 25,24 post} = 585$$

Eq 10.2-13

Calculate Vs (storage volume required):
$$V_S = \left(\frac{V_S}{V_R}\right) * Q"25,24*A*$$
 3.630


Determine q_o/q_i from Figure 10.2-6

Determine q_o/q_i :

Figure 10.2-6 - SCS ratio of outflow to inflow curves (10-23)

- Determine runoff depth(Q-inches) for 25-year 24-hour storm event
- Determine the unit peak discharge rate (q_u) for the 25-year 24-hour storm event
- Compute the overbank flooding protection volume

Estimate the peak flow rates

Calculate direct runoff:
$$Q''_{25,24} = \frac{(P-0.2S)^2}{(P+0.8S)}$$
 Eq 10.2-10

$$S = \frac{1000}{\text{CN}} - 10$$

$$\frac{\text{CN}_{\text{exist}} = 61}{\text{CN}_{\text{prop}} = 70}$$

$$S_{\text{post}} = 6.4$$

$$S_{\text{post}} = 6.23 \text{ inches}$$

$$Q_{25,24 \text{ pre}}$$
 = 2.15 inches $Q_{25,24 \text{ post}}$ = 2.98 inches $Q_{25,24 \text{ NET}}$ = 0.83 inches

Determine quusing Figure 10.2-8

$$q_{u 25,24 pre} = 400$$
 $q_{u 25,24 post} = 585$

 $= \left(\frac{V_s}{V_s}\right) * O"25 24 * A *$

Calculate Vs (storage volume required): $V_S = \left(\frac{V_s}{V_R}\right) * Q"25,24 * A * 3,630$

Determine q_o/q_i from Figure 10.2.6

$$q_0/q_{i,25,24 \text{ pre}} = 0.040$$
 $q_0/q_{i,25,24 \text{ post}} = 0.028$

Determine runoff depth(Qinches) for 25-year 24-hour storm event

Determine the unit peak discharge rate (q_{...}) for the 25-year 24-hour storm event

Compute the overbank flooding protection volume

Estimate the peak flow rates

Calculate direct runoff:
$$Q''_{25,24} = \frac{(P-0.2S)^2}{(P+0.8S)}$$
 Eq 10.2-10

$$S = \frac{1000}{\text{CN}} - 10$$

$$CN_{\text{exist}} = 61 \qquad S_{\text{pre}} = 6.4 \qquad P_{25,24} = 6.23 \text{ inches}$$

$$CN_{\text{prop}} = 70 \qquad S_{\text{post}} = 4.3$$

$$Q_{25,24 \text{ pre}} = 2.15 \text{ inches} \qquad Q_{25,24 \text{ post}} = 2.98 \text{ inches}$$

$$Q_{25,24 \text{ NET}} = 0.83 \text{ inches}$$

Determine quusing Figure 10.2-8

Eq 10.2-13

Calculate Vs (storage volume required):
$$V_S = \left(\frac{V_s}{V_R}\right) * Q"25,24*A*$$
 3,630

Determine q_o/q_i from Figure 10.2.6

$$q_0/q_{1.25.24} = 0.040$$

$$q_0/q_{i, 25.24 \text{ pre}} = 0.040$$
 $q_0/q_{i, 25.24 \text{ post}} = 0.028$

Determine V_s/V_R from Equation 10.2-12:

$$\frac{V_S}{V_R} = 0.682 - 1.43 \left(\frac{q_o}{q_i}\right) + 1.64 \left(\frac{q_o}{q_i}\right)^2 - 0.804 \left(\frac{q_o}{q_i}\right)^3$$

$$V_S/V_{R pre} = 0.627 \qquad V_S/V_{R post} = 0.643$$

Determine runoff depth(Qinches) for 25-year 24-hour storm event

Determine the unit peak discharge rate (q_{...}) for the 25-year 24-hour storm event

Compute the overbank flooding protection volume

Estimate the peak flow rates

Calculate direct runoff:
$$Q''_{25,24} = \frac{(P-0.2S)^2}{(P+0.8S)}$$
 Eq 10.2-10

$$S = \frac{1000}{\text{CN}} - 10$$

$$\frac{\text{CN}_{\text{exist}} = 61}{\text{CN}_{\text{prop}} = 70}$$

$$S_{\text{pre}} = 6.4$$

$$S_{\text{post}} = 4.3$$
P _{25,24} = 6.23 inches

$$Q_{25,24 \text{ pre}}$$
 = 2.15 inches $Q_{25,24 \text{ post}}$ = 2.98 inches $Q_{25,24 \text{ NET}}$ = 0.83 inches

Determine quusing Figure 10.2-8

$$q_{u 25,24 post} = 585$$

Eq 10.2-13

Calculate Vs (storage volume required):
$$V_S = \left(\frac{V_s}{V_R}\right) * Q"25,24*A*$$
 3,630

Determine q_o/q_i from Figure 10.2.6

$$q_0/q_{i,25,24} pre = 0.040$$

$$q_o/q_{i, 25.24 \text{ pre}} = 0.040$$
 $q_o/q_{i, 25.24 \text{ post}} = 0.028$

Determine V_s/V_R from Equation 10.2-12:

$$\frac{V_S}{V_R} = 0.682 - 1.43 \left(\frac{q_o}{q_i}\right) + 1.64 \left(\frac{q_o}{q_i}\right)^2 - 0.804 \left(\frac{q_o}{q_i}\right)^3$$

$$V_S/V_{R pre} = 0.627 \qquad V_S/V_{R post} = 0.643$$

$$V_{S pre} = 50,059 \text{ ft}^3 \qquad V_{S post} = 71,181 \text{ ft}^3$$

Overbank Flooding Protection Volume (Q_v) Calculation Steps

Determine runoff depth(Qinches) for 25-year 24-hour storm event

Determine the unit peak discharge rate (q_{...}) for the 25-year 24-hour storm event

Compute the overbank flooding protection volume

Estimate the peak flow rates

Calculate direct runoff: $Q''_{25,24} = \frac{(P-0.2S)^2}{(P+0.8S)}$ Eq 10.2-10

$$S = \frac{1000}{\text{CN}} - 10$$

$$\frac{\text{CN}_{\text{exist}} = 61}{\text{CN}_{\text{prop}} = 70} \quad \text{S}_{\text{pre}} = 6.4 \quad \text{P}_{25,24} = 6.23 \text{ inches}$$

$$\frac{\text{CN}_{\text{prop}} = 70}{\text{S}_{\text{post}} = 4.3}$$

$$Q_{25,24 \text{ pre}} = 2.15 \text{ inches} \quad Q_{25,24 \text{ post}} = 2.98 \text{ inches}$$

$$Q_{25,24 \text{ NET}} = 0.83 \text{ inches}$$

Determine q_{...} using Figure 10.2-8

$$q_{u 25,24 pre} = 400$$

q_{u 25,24 post}= 585

Calculate Vs (storage volume required): $V_S = \left(\frac{V_s}{V_p}\right) * Q"25,24 * A *$ 3.630

Determine q_0/q_i from Figure 10.2.6

$$q_0/q_{i,25,24,pre} = 0.040$$
 $q_0/q_{i,25,24,post} = 0.028$

Determine V_s/V_R from Equation 10.2-12:

$$\frac{V_S}{V_R} = 0.682 - 1.43 \left(\frac{q_o}{q_i}\right) + 1.64 \left(\frac{q_o}{q_i}\right)^2 - 0.804 \left(\frac{q_o}{q_i}\right)^3$$

$$V_S/V_{R \text{ pre}} = 0.627 \qquad V_S/V_{R \text{ post}} = 0.643$$

$$V_{S \text{ pre}} = 50,059 \text{ ft}^3 \qquad V_{S \text{ post}} = 71,181 \text{ ft}^3$$

Estimate the peak flow rate using Equation 10.2-14: $V_{\text{N}} = 71.181 - 50.059 = 21.122 \text{ ft}^3$

 Q_{25} (pre) = $q_u * A * Q'' * F_p = 400*10.23$ acres/640 acre/mi²*2.15 inches*1 = 13.7 cfs Q_{25} (post) = q_u *A*Q"*F_n = 585*10.23 acres/640 acre/mi²*2.98 inches*1 = 27.9 cfs

Extreme Flooding Protection Volume (Q_{f-100yr}) Calculation Steps Calculate direct runoff: $Q''_{100,24} = \frac{(P-0.2S)^2}{(P+0.8S)}$ Eq 10.2-10

Determine runoff depth(Qinches) for 100-year 24hour storm event

Determine the unit peak discharge rate (q_{...}) for the 100-year 24-hour storm event

Compute the overbank flooding protection volume

Estimate the peak flow rates

 $S = \frac{1000}{CN} - 10$ $CN_{exist} = 61$ $CN_{prop} = 70$ $CN_{prop} = 70$ $Q_{100.24 \text{ pre}} = 3.19 \text{ inches}$ $Q_{100.24 \text{ post}} = 4.17 \text{ inches}$

Determine q_{...} using Figure 10.2-8

 $q_{u 100.24 pre} = 405$

q_{u 100,24 post}= **590** Eq 10.2-13

Calculate Vs (storage volume required): $V_S = \left(\frac{V_s}{V_p}\right) * Q"25,2\overline{4*A}*$ 3.630

Determine q_0/q_i from Figure 10.2.6

 $q_0/q_{i,100.24 \text{ pre}} = 0.037$ $q_0/q_{i,100.24 \text{ post}} = 0.025$

Determine V_s/V_R from Equation 10.2-12:

$$\frac{V_S}{V_R} = 0.682 - 1.43 \left(\frac{q_o}{q_i}\right) + 1.64 \left(\frac{q_o}{q_i}\right)^2 - 0.804 \left(\frac{q_o}{q_i}\right)^3$$

$$V_S/V_{R \text{ pre}} = 0.631 \qquad V_S/V_{R \text{ post}} = 0.647$$

 $V_{S pre} = 74,748 \text{ ft}^3$ $V_{S post} = 100,190 \text{ ft}^3$ Estimate the peak flow rate using Equation 10.2-14:

 Q_{100} (pre) = q_u *A*Q"*F_p = 405*10.23 acres/640 acre/mi²*3.19 inches*1 = 20.7 cfs Q_{100} (post) = q_{11} *A*Q"*F_n = 590*10.23 acres/640 acre/mi²*4.17 inches*1 = 39.3 cfs

- Calculate forebay volume
- 2 Calculate permanent pool volume and verify pond can maintain
- Calculate water quality volume and design orifice
- Calculate channel protection volume and design orifice
- Design pond and outlet to maintain 25-yr pre-development peak flow
- Design spillway to safely convey 100yr post-development peak flow

$$V_{fbay} = 900 \text{ ft}^3$$

$$V_{pool} = 900 \text{ ft}^3$$
, Depth_{min} = 1.5 ft

$$WQ_v = 9,059 \text{ ft}^3$$
, $D_{orif} = 2"$, $Elev_{orif} = \frac{perm pool}{elevation}$

$$CP_v = 22,225 \text{ ft}^3$$
, $D_{orif} = 3"$, $Elev_{orif} = water quality elevation$

$$Q_{fpre} =$$

25-year Storm

Calculate ratio of post $(Q_{P25post})$ to pre-development (Q_{P25pre}) discharge:

Calculate the inflow volume of runoff (V_R)

Find the ratio of V_S/V_R using Figure 10.5-3

Calculate V_S

25-year Storm

Calculate ratio of post (Q_{P25post}) to pre-development (Q_{P25pre}) discharge:

Calculate Q_{P25(pre)} / Q_{P25(post)}:

$$\frac{Q_{P25\,(pre)}}{Q_{P25\,(post)}} = \left(\frac{13.7\,cfs}{27.9\,cfs}\right) = 0.49$$

Calculate the inflow volume of runoff (V_R)

Find the ratio of V_S/V_R using Figure 10.5-3

Calculate V_S

25-year Storm

Calculate ratio of post (Q_{P25post}) to pre-development (Q_{P25pre}) discharge:

Calculate the inflow volume of runoff (V_R)

Find the ratio of V_S/V_R using Figure 10.5-3

Calculate V_S

Calculate Q_{P25(pre)} / Q_{P25(post)}:

$$\frac{Q_{P25 (pre)}}{Q_{P25 (post)}} = \left(\frac{13.7 cfs}{27.9 cfs}\right) = 0.49$$

Calculate V_R:

```
V_R = K_R * Q_D * A_M
= (53.33)*(2.98 in)*(10.23 ac) * (mi^2/640 acre)
= 2.55 ac-ft = 111,026 ft^3
```

 V_R = volume of runoff (ft³)

 K_R = conversion from in-mi² to acre-ft

 $Q_D = Q_{25,24} = 25$ -yr, 24-hr runoff depth (in)

25-year Storm

Calculate ratio of post (Q_{P25post}) to pre-development (Q_{P25pre}) discharge:

2 Calculate the inflow volume of runoff (V_R)

Find the ratio of V_S/V_R using Figure 10.5-3

Calculate Q_{P25(pre)} / Q_{P25(post)}:

$$\frac{Q_{P25 (pre)}}{Q_{P25 (post)}} = \left(\frac{13.7 cfs}{27.9 cfs}\right) = 0.49$$

Calculate V_R:

$$V_R = K_R * Q_D * A_M$$

$$= (53.33)*(2.99 in)*(10.23 ac) * (mi^2/640 acre)$$

$$= 2.55 ac-ft = 111,026 ft^3$$

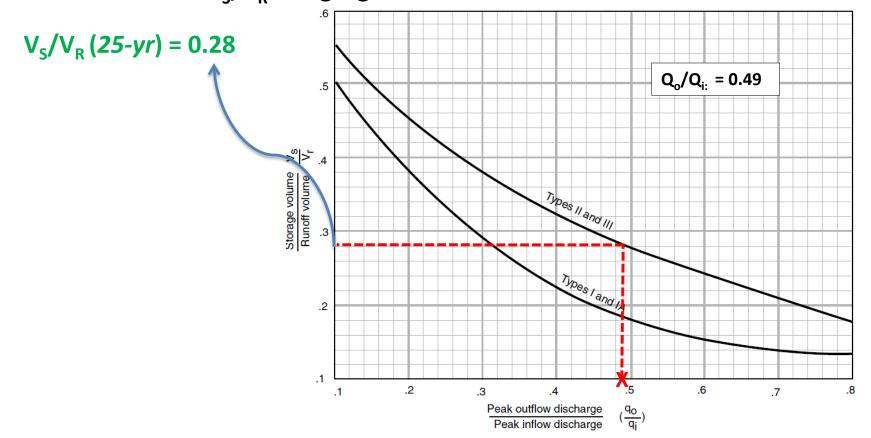
 V_R = volume of runoff (ft³)

 K_R = conversion from in-mi² to acre-ft

 $Q_D = Q_{1,24} = 1$ -yr, 24-hr runoff depth (in)

Find V_s/V_R:using Figure 10.5-3:

Calculate V_s



5

Maintain pre-development peak flows (Q_{P25})

• Find the ratio of V_S/V_R using Figure 10.5-3

25-year Storm

Calculate ratio of post (Q_{post}) to pre-development (Q_{pre}) discharge:

Calculate the inflow volume of runoff (V_R)

Find the ratio of V_S/V_R using Figure 10.5-3

Calculate Q_{P25(pre)} / Q_{P25(post)}:

$$\frac{Q_{P25 (pre)}}{Q_{P25 (post)}} = \left(\frac{13.7 cfs}{27.9 cfs}\right) = 0.49$$

Calculate V_R:

$$V_R = K_R * Q_D * A_M$$

$$= (53.33)*(2.99 in)*(10.23 ac) * (mi^2/640 acre)$$

$$= 2.55 ac-ft = 111,026 ft^3$$

 V_R = volume of runoff (ft³)

 K_R = conversion from in-mi² to acre-ft

 $Q_D = Q_{1,24} = 1$ -yr, 24-hr runoff depth (in)

Find V_s/V_R : using Figure 10.5-3:

$$V_{S}/V_{R}$$
 (25-yr) = 0.28

Calculate V_s

25-year Storm

Calculate ratio of post (Q_{post}) to pre-development (Q_{pre}) discharge:

2 Calculate the inflow volume of runoff (V_R)

Find the ratio of V_S/V_R using Figure 10.5-3

Calculate V_s

Calculate Q_{P25(pre)} / Q_{P25(post)}:

$$\frac{Q_{P25 (pre)}}{Q_{P25 (post)}} = \left(\frac{13.7 cfs}{27.9 cfs}\right) = 0.49$$

Calculate V_R:

$$V_R = K_R * Q_D * A_M$$

$$= (53.33)*(2.99 in)*(10.23 ac) * (mi^2/640 acre)$$

$$= 2.55 ac-ft = 111.026 ft^3$$

 V_R = volume of runoff (ft³)

 K_R = conversion from in-mi² to acre-ft

 $Q_D = Q_{1,24} = 1$ -yr, 24-hr runoff depth (in)

Find V_s/V_R : using Figure 10.5-3:

$$V_{S}/V_{R}$$
 (25-yr) = 0.28

Calculate V_s:

$$V_S = V_R * V_S / V_R$$

= (111,026 ft³) * (0.28)
= 31,087 ft³

- Calculate forebay volume
- Calculate permanent pool volume and verify pond can maintain
- Calculate water quality volume and design orifice
- Calculate channel protection volume and design orifice
- Design pond and outlet to maintain 25-yr pre-development peak flow
- Design spillway to safely convey 100yr post-development peak flow

- $V_{\text{fbay}} = 900 \text{ ft}^3$
- $V_{pool} = 900 \text{ ft}^3$, Depth_{min} = 1.5 ft
- $WQ_v = 9,059 \text{ ft}^3$, $D_{orif} = 2"$, $Elev_{orif} = \frac{perm pool}{elevation}$
- $CP_v = 22,225 \text{ ft}^3$, $D_{orif} = 3$ ", $Elev_{orif} = water quality elevation$
- $Q_{25} = 31,087 \text{ ft}^3$

100-year Storm

Calculate ratio of post
(Qf_{100post}) to pre-development
(Q_{100pre}) discharge:

2 Calculate the inflow volume of runoff (V_R)

Find the ratio of V_S/V_R using Figure 10.5-3

Calculate V_s

Calculate $Q_{f100(pre)}/Q_{f100(post)}$:

$$\frac{Q_{P100\ (pre)}}{Q_{100\ (post)}} = \left(\frac{20.7\ cfs}{39.3\ cfs}\right) = 0.53$$

Calculate V_R:

$$V_R = K_R * Q_D * A_M$$

$$= (53.33)*(4.17 in)*(10.23 ac) * (mi^2/640 acre)$$

$$= 3.55 ac-ft = 154.843 ft3$$

 V_R = volume of runoff (ft³)

 K_R = conversion from in-mi² to acre-ft

 $Q_D = Q_{1.24} = 100$ -yr, 24-hr runoff depth (in)

Find V_s/V_R : using Figure 10.5-3:

$$V_{S}/V_{R}$$
 (100-yr) = 0.26

Calculate V_s:

$$V_S = V_R * V_S / V_R$$

= (154,843 ft³) * (0.26)
= **40,259 ft**³

Design Example

Steps to Design Wet Detention Pond

- Calculate forebay volume
- 2 Calculate permanent pool volume and verify pond can maintain
- Calculate water quality volume and design orifice
- Calculate channel protection volume and design orifice
- Design pond and outlet to maintain 25-yr pre-development peak flow
- Design spillway to safely convey 100yr post-development peak flow

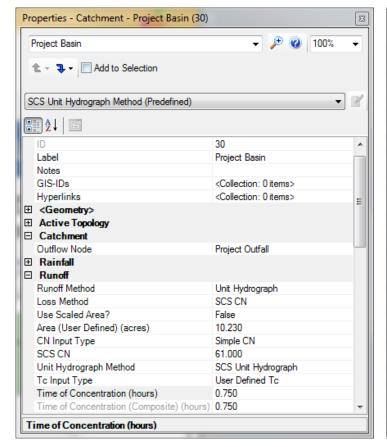
$$V_{\text{fbay}} = 900 \text{ ft}^3$$

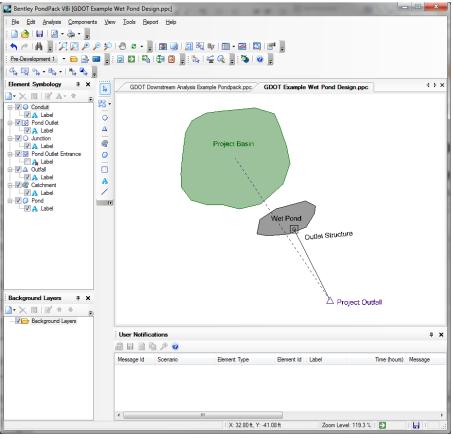
Caution: Manual calculations are approximate and can result in storage volumes larger than necessary. Route using software that bases calculations on entire hydrograph rather than just peak flow, for more accurate storage design

$$V_{pool} = 900 \text{ ft}^3$$
, Depth_{min} = 1.5 ft

=40,259 ft³

$$WQ_v = 9,059 \text{ ft}^3$$
, $D_{orif} = 2$ ", $Elev_{orif} = \frac{perm pool}{elevation}$
 $CP_v = 22,225 \text{ ft}^3$, $D_{orif} = 3$ ", $Elev_{orif} = \frac{water quality}{elevation}$
 $Q_{p25} = 31,087 \text{ ft}^3$

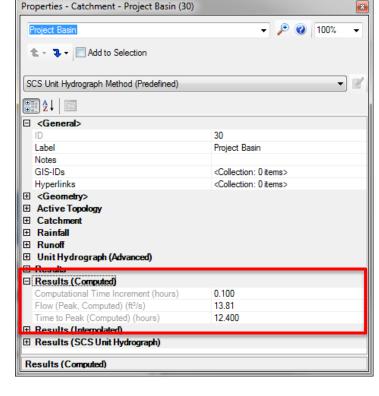

5

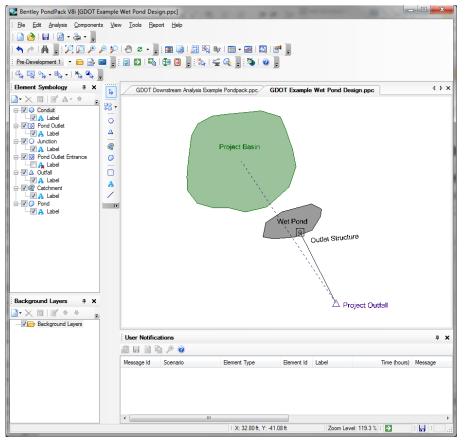

Maintain pre-development peak flows (Q_{P25})

Calculate Storage Volume Required using NRCS Method

Pre-Project Conditions

CN = 61 Tc = 45 min


5

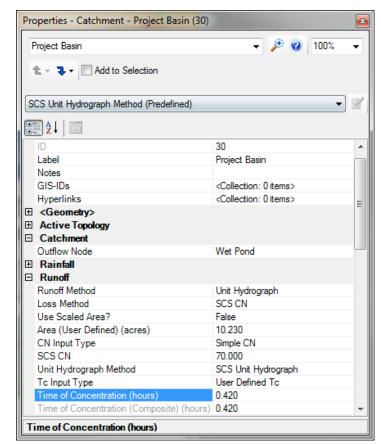

Maintain pre-development peak flows (Q_{P25})

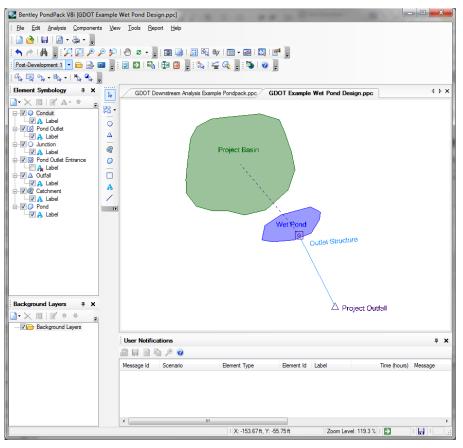
Calculate Storage Volume Required using NRCS Method

Pre-Project Conditions

CN = 61 Tc = 45 min

5


Maintain pre-development peak flows (Q_{P25})

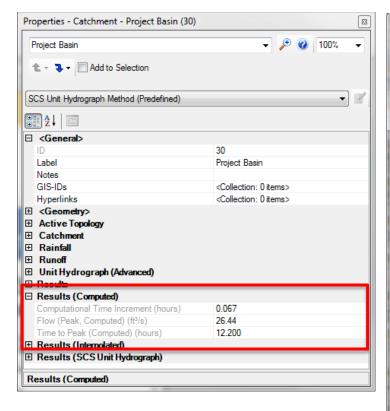

Calculate Storage Volume Required using NRCS Method

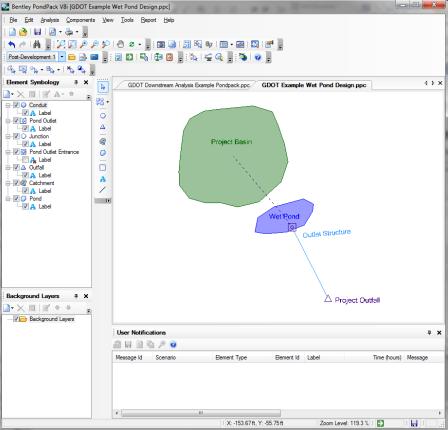
Post-Project Conditions

Roadway Impervious Area Added

CN = 70 Tc = 25 min

5


Maintain pre-development peak flows (Q_{P25})


Calculate Storage Volume Required using NRCS Method

Post-Project Conditions

Roadway Impervious Area Added

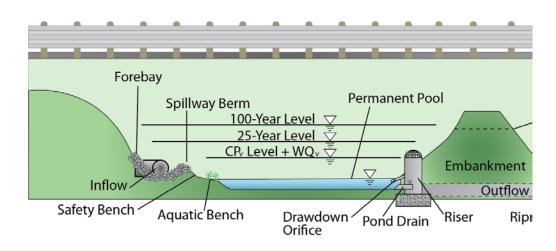
CN = 70 Tc = 25 min

5

Maintain pre-development peak flows (Q_{P25})

Comparison of peak flows calculated with software:

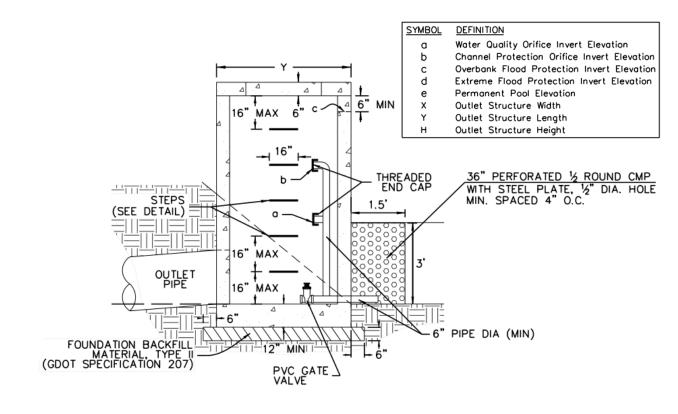
	Peak Flow (cfs)					
Scenario	1-yr	25-yr	100-yr			
Pre-development	2.47	13.95	21.34			
Post-development	8.61	29.52	41.62			
Difference	6.14	15.57	16.11			
Percent Increase	248%	112%	95%			



Wet Detention Pond Design

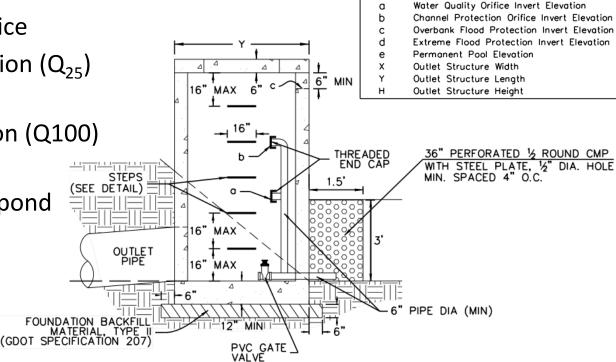
Estimate dimensions of wet detention basin:

- Use software OR manual calculation
- Dimensions will need adjustment to include:
 - Permanent Pool
 - Safety bench
 - Aquatic Bench



Wet Detention Pond Design

 Design emergency spillway to provide safe passage of the 100-yr, 24-hr event



Outlet Structure Configuration

Configure Outlet Structure According to Calculations:

- Outlet pipe
- Water Quality Orifice
- Channel Protection Orifice
- Overbank Flood Protection (Q₂₅)
 Weir/Orifice
- Extreme Flood Protection (Q100)
 Weir/Orifice
- Emergency Spillway (in pond embankment)

SYMBOL

DEFINITION

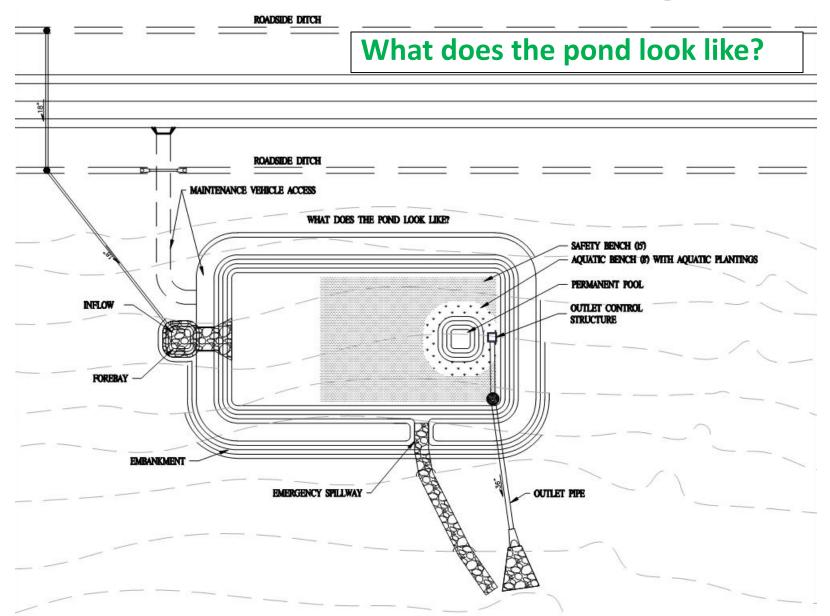
Pond Design

Routed pond outflows must maintain or be less than the 25-year pre-developed peak flow rate

◎ 1-Y	© 1-Yr © 2-Yr © 3-Yr © 5-Yr © 10-Yr ⊚ 25-Yr © 50-Yr © 100-Yr									
Hyd. No.	Hydrograph type	Peak flow	Time interval	Time of conc. To	Time to peak	Volume	Inflow hyd(s)	Maximum Elevation	Maximum Storage	Hydrograph description
	(origin)	(cfs)	(min)	(min)	(min)	(cuft)		(ft)	(cuft)	
1	SCS Runoff	13.95	2	45.00	742.00	79,530				Pre-dev
2	SCS Runoff	29.52	2	25.00	728.00	109,255				Post-dev
3										
4	Reservoir	13.88	2		746.00	107,790	2	105.73	41,826	Routed Pond

Pond Design

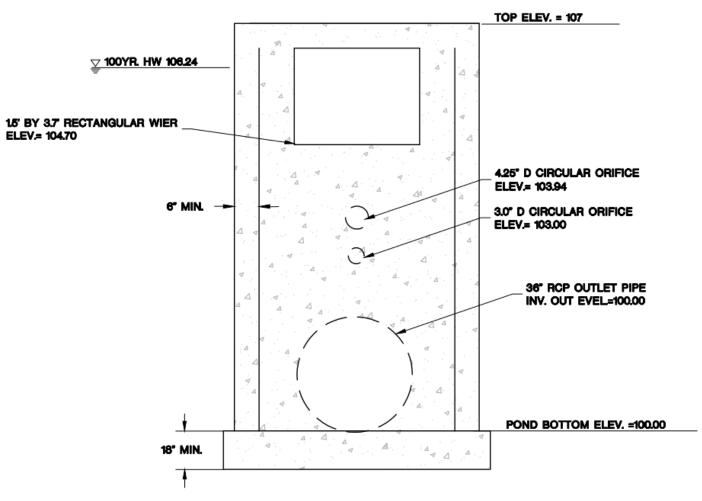
Must provide 1' (minimum) of freeboard for 100-yr event:


• 100-yr pond elevation = 106.24 + 1.00 (freeboard)

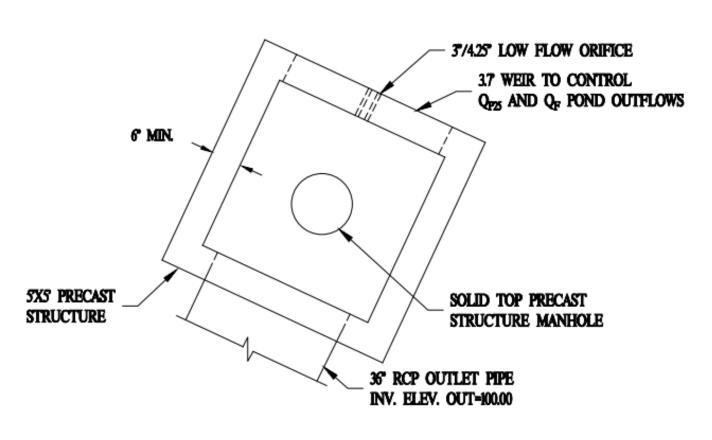
= 107.24

Set top of pond embankment at 108.00 for constructability

○ 1-Yr ○ 2-Yr ○ 3-Yr ○ 5-Yr ○ 10-Yr ○ 25-Yr ○ 50-Yr ○ 100-Yr										
Hyd.	Hydrograph	Peak	Time	Time of	Time	Volume	Inflow	Maximum	Maximum	Hydrograph
No.	type	flow	interval	conc. Tc	to peak		hyd(s)	Elevation	Storage	description
	(origin)	(cfs)	(min)	(min)	(min)	(cuft)		(ft)	(cuft)	
1	SCS Runoff	21.34	2	45.00	742.00	117,591				Pre-dev
2	SCS Runoff	41.62	2	25.00	728.00	152,874				Post-dev
3										
4	Reservoir	24.84	2		742.00	151,409	2	106.24	52,126	Routed Pond



What does the OCS look like?



OUTLET CONTROL STRUCTURE

What does the OCS look like?

Design Example - Other Considerations

- Finally, perform cost analysis
- \$\$\$
- May be infeasible due to cost
- Perform a downstream analysis
 - Remember detention is required if downstream analysis shows adverse impacts due to increased flows, even if it is determined infeasible based on MS4 infeasibility criteria
- Other considerations:
 - OCS buoyancy calculation
 - Construction detailing
 - Construction notes
 - Special provisions

Questions

Brad McManus, PE
MS4 Program Manager
Office of Design Policy and Support

bmcmanus@dot.ga.gov